Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Electron. j. biotechnol ; 37: 1-10, Jan. 2019. tab, graf, ilus
Article in English | LILACS | ID: biblio-1048922

ABSTRACT

BACKGROUND: Chia seeds are gaining increasing interest among food producers and consumers because of their prohealth properties. RESULTS: The aim of this work was to evaluate the potential of chia seeds to act as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. The highest inhibitory activity against AChE and BChE was observed for colored seed ethanol extracts. A positive correlation was found between the presence of quercetin and isoquercetin as well as protocatechuic, hydroxybenzoic, and coumaric acids and the activity of extracts as AChE and BChE inhibitors. It has also been shown that grain fragmentation affects the increase in the activity of seeds against cholinesterases (ChE). Furthermore, seeds have been shown to be a source of substances that inhibit microbial growth. CONCLUSIONS: It was found that the chia seed extracts are rich in polyphenols and inhibit the activity of ChEs; therefore, their use can be considered in further research in the field of treatment and prevention of neurodegenerative diseases.


Subject(s)
Seeds/chemistry , Butyrylcholinesterase , Cholinesterase Inhibitors , Salvia/chemistry , Anti-Infective Agents/metabolism , In Vitro Techniques , Flavonols/analysis , Phenolic Compounds/analysis , Polyphenols/analysis , Food Additives
2.
Braz. j. microbiol ; 47(4): 1030-1038, Oct.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-828208

ABSTRACT

Abstract An actinobacterial strain VL-RK_09 having potential antimicrobial activities was isolated from a mango orchard in Krishna District, Andhra Pradesh (India) and was identified as Arthrobacter kerguelensis. The strain A. kerguelensis VL-RK_09 exhibited a broad spectrum of in vitro antimicrobial activity against bacteria and fungi. Production of bioactive metabolites by the strain was the highest in modified yeast extract malt extract dextrose broth, as compared to other media tested. Lactose (1%) and peptone (0.5%) were found to be the most suitable carbon and nitrogen sources, respectively, for the optimum production of the bioactive metabolites. The maximum production of the bioactive metabolites was detected in the culture medium with an initial pH of 7, in which the strain was incubated for five days at 30 °C under shaking conditions. Screening of secondary metabolites obtained from the culture broth led to the isolation of a compound active against a wide variety of Gram-positive and negative bacteria and fungi. The structure of the first active fraction was elucidated using Fourier transform infrared spectroscopy, electrospray ionization mass spectrometry, 1H and 13C nuclear magnetic resonance spectroscopy. The compound was identified as S,S-dipropyl carbonodithioate. This study is the first report of the occurrence of this compound in the genus Arthrobacter.


Subject(s)
Arthrobacter/isolation & purification , Arthrobacter/metabolism , Mangifera/microbiology , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Salts/metabolism , Temperature , Carbon/metabolism , Microbial Sensitivity Tests , Metabolome , Metabolomics/methods , Hydrogen-Ion Concentration , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/chemistry , Minerals/metabolism , Nitrogen/metabolism
3.
Braz. j. microbiol ; 47(1): 96-101, Jan.-Mar. 2016. tab, graf
Article in English | LILACS | ID: lil-775130

ABSTRACT

Abstract One bioactive compound, identified as alternariol 9-methyl ether, was isolated from the crude extract of the endophytic fungus Alternaria sp. Samif01 residing in the roots of Salvia miltiorrhiza Bunge. Alternariol 9-methyl ether was active against bacteria with minimum inhibitory concentration values ranging from 25 to 75 µg/mL and median inhibitory concentration (IC50) values ranging from 16.00 to 38.27 µg/mL. The IC50 value of alternariol 9-methyl ether against spore germination of Magnaporthe oryzae was 87.18 µg/mL. Alternariol 9-methyl ether also showed antinematodal activity against Bursaphelenchus xylophilus and Caenorhabditis elegans with IC50 values of 98.17 µg/mL and 74.62 µg/mL, respectively. This work is the first report on alternariol 9-methyl ether and its biological activities from the endophytic fungus Alternaria sp. Samif01 derived from S. miltiorrhiza Bunge. The results indicate the potential of Alternaria sp. Samif01 as a source of alternariol 9-methyl ether and also support that alternariol 9-methyl ether is a natural compound with high potential bioactivity against microorganisms.


Subject(s)
Animals , Alternaria/chemistry , Anti-Infective Agents/isolation & purification , Endophytes/chemistry , Lactones/isolation & purification , Alternaria/isolation & purification , Anti-Infective Agents/metabolism , Bacteria/drug effects , Endophytes/isolation & purification , Lactones/metabolism , Microbial Sensitivity Tests , Magnaporthe/drug effects , Nematoda/drug effects , Plant Roots/microbiology , Salvia/microbiology
4.
Int. arch. otorhinolaryngol. (Impr.) ; 19(2): 171-175, Apr-Jun/2015.
Article in English | LILACS | ID: lil-747141

ABSTRACT

Introduction Analysis of the suppression effect is a simple method to evaluate cochlear status and central auditory mechanisms and, more specifically, the medial olivocochlear system. This structure may be involved in the generation of mechanisms that cause tinnitus and in the pathophysiology of tinnitus in patients with tinnitus and normal hearing. Objective To review the literature of the etiology of tinnitus on the lights of otoacoustic emissions in patients with normal hearing. Data Synthesis Individuals with tinnitus and normal hearing have a higher prevalence of alterations in transient-evoked otoacoustic emissions and distortion-product otoacoustic emissions than normal subjects. This fact suggests that dysfunctions of the outer hair cells (OHCs) might be important in the generation of the tinnitus; however, this feature is not always present in those who have the symptoms of tinnitus. Final Comments These findings suggest that OHC dysfunction is not necessary for tinnitus development—that is, there might be mechanisms other than OHC damage in the tinnitus development. On the other hand, OHC dysfunction alone is not sufficient to cause the symptom, because a great many individuals with OHC dysfunction did not complain about tinnitus. .


Subject(s)
Anti-Infective Agents/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacteriocins/metabolism , Receptors, Cell Surface/metabolism , Anti-Infective Agents/pharmacology , Endocytosis , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Models, Molecular , Protein Conformation
5.
Braz. j. microbiol ; 46(1): 49-57, 05/2015. tab, graf
Article in English | LILACS | ID: lil-748247

ABSTRACT

Bauhinia forficata is native to South America and used with relative success in the folk medicine in Brazil. The diversity, antibacterial activity, and extracellular hydrolytic enzymes of endophytic fungi associated with this plant were studied. Plant samples, which included leaves, sepals, stems, and seeds, were used. Ninety-five endophytic fungal were isolated (18 from leaves, 22 from sepals, 46 from stems, and nine from seeds), comprising 28 species. The most frequently isolated species were Acremonium curvulum (9.5%), Aspergillus ochraceus (7.37%), Gibberella fujikuroi (10.53%), Myrothecium verrucaria (10.53%) and Trichoderma piluliferum (7.37%). Diversity and species richness were higher in stem tissues, and Sorensen’s index of similarity between the tissues was low. Eleven fungi showed antibacterial activity. Aspergillus ochraceus, Gibberella baccata, Penicillium commune, and P. glabrum were those with the greatest antibacterial activity against Staphylococcus aureus and/or Streptococcus pyogenes. Thirteen species showed proteolytic activity, particularly Phoma putaminum. Fourteen species were cellulase positive, particularly the Penicillium species and Myrmecridium schulzeri. All isolates tested were xylanase positive and 10 showed lipolytic activity, especially Penicillium glabrum. It is clear that the endophytic fungi from B. forficata have potential for the production of bioactive compounds and may be a source of new therapeutic agents for the effective treatment of diseases in humans, other animals, and plants. To our knowledge, this is the first study of endophytic fungi from different tissues of B. forficata and their biotechnological potential.


Subject(s)
Anti-Infective Agents/metabolism , Biodiversity , Bauhinia/microbiology , Endophytes/classification , Fungi/metabolism , Hydrolases/metabolism , Plants, Medicinal/microbiology , Brazil , Bacteria/drug effects , Biological Products/metabolism , Biotechnology/methods , Endophytes/isolation & purification , Endophytes/metabolism , Fungi/classification , Fungi/isolation & purification , Microbial Sensitivity Tests , South America , Technology, Pharmaceutical/methods
6.
Braz. j. microbiol ; 46(1): 183-188, 05/2015. tab, graf
Article in English | LILACS | ID: lil-748262

ABSTRACT

The interaction of the cyanidin, pelargonidin, catechin, myrecetin and kaempferol with casein and gelatin, as proline rich proteins (PRPs), was studied. The binding constants calculated for both flavonoid-casein and flavonoid-gelatin were fairly large (105–107 M−1) indicating strong interaction. Due to higher proline content in gelatin, the binding constants of flavonoid-gelatin (2.5 × 105–6.2 × 107 M−1) were found to be higher than flavonoid-casein (1.2 × 105–5.0 × 107 M−1). All the flavonoids showed significant antibacterial activity against the tested strains. Significant loss in activity was observed due to the complexation with PRPs confirming that binding effectively reduced the concentration of the free flavonoids to be available for antibacterial activity. The decline in activity was corresponding to the values of the binding constants. Though the activities of free catechin and myrecetin were higher compared to pelargonidin, cyanidin and kaempferol yet the decline in activity of catechin and myrecetin due to complexation with casein and gelatin was more pronounced.


Subject(s)
Anti-Infective Agents/metabolism , Caseins/metabolism , Flavonoids/metabolism , Gelatin/metabolism , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Flavonoids/pharmacology , Microbial Sensitivity Tests , Protein Binding
7.
Braz. j. microbiol ; 46(1): 149-154, 05/2015. tab
Article in English | LILACS | ID: lil-748264

ABSTRACT

Public health is facing a new challenge due to the alarming increase in bacterial resistance to most of the conventional antibacterial agents. It has been found that only minor cell damage is caused when exposed to sub-lethal levels of antimicrobial. Biofilms can play an important role in producing resistance, which is developed to reservoirs of pathogens in the hospital and cannot be easily removed. The aim of this study was to test whether the sub-lethal dose of antibiotics can induce biofilm formation of P. aeruginosa following incubating in the presence and absence of chlorhexidine. Standard antibiotic-micro broth 96-flat well plates were used for determination of MIC and biofilm assay. The adherence degree of biofilm was determined by estimation of OD630 nm values using ELISA reader. The mean 22 isolates of P. aeruginosa growing in culture with presence and absence of chlorhexidine, could exhibited the significant (p < 0.001) proportion of adherence followed incubation in sub minimal inhibitory concentrations (Sub-MIC) of cefotaxim, amoxicillin, and azithromycin in comparison with control (antibiotic-free broth), while the sub-MIC of ciprofloxacin revealed significant inhibition of biofilm. Conclusion: Incubating the isolates of P. aeruginosa to sub-MIC of antibiotics exhibited induction of biofilm in the presence of chlorhexidine.


Subject(s)
Anti-Bacterial Agents/metabolism , Anti-Infective Agents/metabolism , Biofilms/drug effects , Biofilms/growth & development , Chlorhexidine/metabolism , Growth Substances/metabolism , Pseudomonas aeruginosa/drug effects , Microbial Sensitivity Tests , Pseudomonas aeruginosa/physiology
8.
Braz. j. microbiol ; 45(4): 1263-1270, Oct.-Dec. 2014. ilus, tab
Article in English | LILACS | ID: lil-741276

ABSTRACT

Trichoderma spp is the cause of the green mold disease in mushroom cultivation production. Many disinfection treatments are commonly applied to lignocellulose substrates to prevent contamination. Mushroom growers are usually worried about the contaminations that may occur after these treatments during handling or spawning. The aim of this paper is to estimate the growth of the green mold Trichoderma sp on lignocellulose substrates after different disinfection treatments to know which of them is more effective to avoid contamination during spawning phase. Three different treatments were assayed: sterilization (121 ºC), immersion in hot water (60 and 80 ºC), and immersion in alkalinized water. Wheat straw, wheat seeds and Eucalyptus or Populus sawdust were used separately as substrates. After the disinfection treatments, bagged substrates were sprayed with 3 mL of suspension of conidia of Trichoderma sp (10(5) conidia/mL) and then separately spawned with Pleurotus ostreatus or Gymnopilus pampeanus. The growth of Trichoderma sp was evaluated based on a qualitative scale. Trichoderma sp could not grow on non-sterilized substrates. Immersions in hot water treatments and immersion in alkalinized water were also unfavorable treatments for its growth. Co- cultivation with mushrooms favored Trichoderma sp growth. Mushroom cultivation disinfection treatments of lignocellulose substrates influence on the growth of Trichoderma sp when contaminations occur during spawning phase. The immersion in hot water at 60 ºC for 30 min or in alkalinized water for 36 h, are treatments which better reduced the contaminations with Trichoderma sp during spawning phase for the cultivation of lignicolous species.


Subject(s)
Agaricales/growth & development , Disinfection/methods , Trichoderma/growth & development , Alkalies/metabolism , Anti-Infective Agents/metabolism , Eucalyptus/microbiology , Hot Temperature , Populus/microbiology , Temperature , Trichoderma/drug effects , Trichoderma/radiation effects , Triticum/microbiology
9.
Braz. j. microbiol ; 45(4): 1325-1332, Oct.-Dec. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-741283

ABSTRACT

In the present study, rapid reduction and stabilization of Ag+ ions with different NaOH molar concentration (0.5 mM, 1.0 mM and 1.5 mM) has been carried out in the aqueous solution of silver nitrate by the bio waste peel extract of P.granatum. Generally, chemical methods used for the synthesis of AgNPs are quite toxic, flammable and have adverse effect in medical application but green synthesis is a better option due to eco-friendliness, non-toxicity and safe for human. Stable AgNPs were synthesized by treating 90 mL aqueous solution of 2 mM AgNO3 with the 5 mL plant peels extract (0.4% w/v) at different NaOH concentration (5 mL). The synthesized AgNPs were characterized by UV-Vis spectroscopy, TEM and SEM. Further, antimicrobial activities of AgNPs were performed on Gram positive i.e. Staphylococcus aureus, Bacillus subtilius and Gram negative i.e. E. coli, Pseudomonas aeruginosa bacteria. The AgNPs synthesized at 1.5 mM NaOH concentration had shown maximum zone of inhibition (ZOI) i.e. 49 ± 0.64 in E. coli, whereas Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilius had shown 40 ± 0.29 mm, 28 ± 0.13 and 42 ± 0.49 mm ZOI respectively. The MIC value of 30 g/mL observed for E. coli Whereas, Staphylococcus aureus, Bacillus subtilius and Pseudomonas aeruginosa had shown 45 µg/mL, 38 µg/mL, 35 µg/mL respectively. The study revealed that AgNPs had shown significant antimicrobial activity as compared to Streptomycin.


Subject(s)
Anti-Infective Agents/metabolism , Nanoparticles/metabolism , Silver Nitrate/metabolism , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Spectrum Analysis
10.
Braz. j. microbiol ; 45(1): 313-321, 2014. ilus, tab
Article in English | LILACS | ID: lil-709491

ABSTRACT

Biosynthesis of active secondary metabolites by fungi occurs as a specific response to the different growing environments. Changes in this environment alter the chemical and biological profiles leading to metabolites diversification and consequently to novel pharmacological applications. In this work, it was studied the influence of three parameters (fermentation length, medium composition and aeration) in the biosyntheses of antimicrobial metabolites by the fungus Aspergillus parasiticus in 10 distinct fermentation periods. Metabolism modulation in two culturing media, CYA and YES was evaluated by a 2² full factorial planning (ANOVA) and on a 2³ factorial planning, role of aeration, medium composition and carbohydrate concentration were also evaluated. In overall, 120 different extracts were prepared, their HPLC profiles were obtained and the antimicrobial activity against A. flavus, C. albicans, E. coli and S. aureus of all extracts was evaluated by microdilution bioassay. Yield of kojic acid, a fine chemical produced by the fungus A. parasiticus was determined in all extracts. Statistical analyses pointed thirteen conditions able to modulate the production of bioactive metabolites by A. parasiticus. Effect of carbon source in metabolites diversification was significant as shown by the changes in the HPLC profiles of the extracts. Most of the extracts presented inhibition rates higher than that of kojic acid as for the extract obtained after 6 days of fermentation in YES medium under stirring. Kojic acid was not the only metabolite responsible for the activity since some highly active extracts showed to possess low amounts of this compound, as determined by HPLC.


Subject(s)
Anti-Infective Agents/metabolism , Aspergillus/metabolism , Aspergillus/drug effects , Aspergillus/growth & development , Candida albicans/drug effects , Culture Media/chemistry , Escherichia coli/drug effects , Fermentation , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects
11.
Braz. j. microbiol ; 45(1): 153-162, 2014. tab
Article in English | LILACS | ID: lil-709458

ABSTRACT

Beneficial interactions between plants and microorganisms have been investigated under different ecological, physiological, biochemical, and genetic aspects. However, the systematic exploration of biomolecules with potential for biotechnological products from this interaction still is relatively scarce. Therefore, this study aimed the evaluation of the diversity and antimicrobial activity of the endophytic fungi obtained from roots, stems and leafs of Myrcia guianensis (Myrtaceae) from the Brazilian Amazon. 156 endophytic fungi were isolated and above 80% were identified by morphological examination as belonging to the genera Pestalotiopsis, Phomopsis, Aspergillus, Xylaria, Nectria, Penicillium and Fusarium. Fermented broth of those fungi were assayed for antimicrobial activity and four inhibited the growth of Staphylococcus aureus, Enterococcus faecalis, Candida albicans and Penicillium avellaneum. As the strain named MgRe2.2.3B (Nectria haematococca) had shown the most promising results against those pathogenic strains, its fermented broth was fractioned and only its two low polar fractions demonstrated to be active. Both fractions exhibited a minimum bactericidal concentration of 50 µg.mL-1 against S. aureus and a minimum fungicidal concentration of 100 µg.mL-1 against P. avellaneum. These results demonstrate the diversity of fungal genera in M. guianensis and the potential of these endophytic fungi for the production of new antibiotics.


Subject(s)
Anti-Infective Agents/metabolism , Biodiversity , Endophytes/classification , Endophytes/isolation & purification , Fungi/classification , Fungi/isolation & purification , Myrtaceae/microbiology , Brazil , Bacteria/drug effects , Endophytes/metabolism , Fungi/drug effects , Microbial Sensitivity Tests , Plant Leaves/microbiology , Plant Roots/microbiology , Plant Stems/microbiology
12.
Braz. j. microbiol ; 45(1): 81-88, 2014. ilus, tab
Article in English | LILACS | ID: lil-709482

ABSTRACT

Bacteriocins from lactic acid bacteria are ribosomal synthesized antibacterial proteins/ peptides having wide range of applications. Lactobacillus pentosus SJ65, isolated from fermented Uttapam batter (used to prepare south Indian pan cake), produces bacteriocin having a broad spectrum of activity against pathogens. Optimization studies are of utmost important to understand the source of utilization and the conditions to enhance the production of metabolites. In the present study, an attempt was made to identify the parameters involved for maximal production of antimicrobial compounds especially bacteriocin from the isolate L. pentosus SJ65. Initially, optimal conditions, such as incubation period, pH, and temperature were evaluated. Initial screening was done using methodology onevariable-at-a-time (OVAT) for various carbon and nitrogen sources. Further evaluation was carried out statistically using Plackett-Burman design and the variables were analyzed using response surface methodology using central composite design. The optimum media using tryptone or soy peptone, yeast extract, glucose, triammonium citrate, MnSO4, dipotassium hydrogen phosphate and tween 80 produced maximum bacteriocin activity.


Subject(s)
Anti-Infective Agents/metabolism , Biological Products/metabolism , Culture Media/chemistry , Lactobacillus/growth & development , Lactobacillus/metabolism , Biostatistics , Hydrogen-Ion Concentration , Temperature , Time Factors
13.
Braz. j. microbiol ; 44(4): 1285-1290, Oct.-Dec. 2013. ilus, tab
Article in English | LILACS | ID: lil-705269

ABSTRACT

Enokipodins A, B, C, and D are antimicrobial sesquiterpenes isolated from the mycelial culture medium of Flammulina velutipes, an edible mushroom. The presence of a quaternary carbon stereocenter on the cyclopentane ring makes enokipodins A-D attractive synthetic targets. In this study, nine different cytochrome P450 inhibitors were used to trap the biosynthetic intermediates of highly oxygenated cuparene-type sesquiterpenes of F. velutipes. Of these, 1-aminobenzotriazole produced three less-highly oxygenated biosynthetic intermediates of enokipodins A-D; these were identified as (S)-(-)-cuparene-1,4-quinone and epimers at C-3 of 6-hydroxy-6-methyl-3-(1,2,2-trimethylcyclopentyl)-2-cyclohexen-1-one. One of the epimers was found to be a new compound.


Subject(s)
Anti-Infective Agents/metabolism , Flammulina/metabolism , Sesquiterpenes/metabolism , Biosynthetic Pathways , /metabolism
14.
Electron. j. biotechnol ; 16(6): 17-17, Nov. 2013. ilus, tab
Article in English | LILACS | ID: lil-696558

ABSTRACT

Background: The fermentation substrate efficiency of glucose supplemented with guava seed flour (GGSF) or glucose supplemented with dry Aspergillus niger mycelium (GANM) was evaluated during the production of biomass and antimicrobial compounds by the lactic acid bacteria Weissella confusa. Results: The fermentation substrate efficiency was measured by comparing the biomass formation, substrate consumption, substrate conversion, antimicrobial activity and product yield. The antimicrobial activity was measured against a commercial Staphylococcus aureus strain. The results were compared against fermentations performed in a commercial substrate (CS), the MRS (Man-Rogosa-Sharpe) substrate. The fermentations were performed discontinuously for 4 hrs at 100 rpm and 32ºC. The biomass production exhibited a statistically significant difference (P ≤ 0.05) between treatments. The biomass production was 13.98% higher in the CS than in the GGSF and GANM substrates; however, there were no statistically significant differences for the specific growth rate. Conclusions: The GGSF and GANM substrates favored an antimicrobial activity against Staphylococcus aureus during the second and third hours of fermentation (inhibition diameter was 6.11% and 4.72%, respectively). The GGSF, GANM and CS substrates did not present statistically significant differences for the production of antimicrobial substances against Staphylococcus aureus. Therefore, GGSF and GANM can be considered as viable and economical alternative nitrogen sources for the production of the antimicrobial compounds formed by Weissella confusa in submerged fermentations.


Subject(s)
Aspergillus niger/metabolism , Weissella/metabolism , Anti-Infective Agents/metabolism , Nitrogen/metabolism , Bacteriocins , Biomass , Lactic Acid , Mycelium , Psidium , Fermentation , Flour , Glucose , Industrial Waste
15.
Journal of Korean Medical Science ; : 1506-1512, 2010.
Article in English | WPRIM | ID: wpr-14302

ABSTRACT

To evaluate the association of Toll-like receptors (TLRs), antimicrobial peptides (AMPs) and vitamin D receptors (VDRs) in psoriasis, lesional (PP) and perilesional skin (PN) from psoriasis, atopic dermatitis (AD) patients and healthy controls (NN) were studied by immunohistochemistry. Compared with PN, AD and NN skin, dysregulated expression of TLRs, AMPs and VDR was detected in PP skin. Noteworthy, our results showed altered correlation between TLR2 and VDR expression in PP and PN skin. Human beta defensin 2 (HBD2) and cathelicidin (LL-37) expressions in the PP skin were higher in serum vitamin D sufficient (VDS) groups than serum vitamin D deficient (VDD) groups. Negative correlation was found between TLR2 and VDR expression in the PP skin of VDD groups. However, positive correlation was noted in the PP skin of VDS groups. Based on the present results, therapies targeting the activity of TLRs, AMPs and vitamin D, including modulation of the TLR-VDR pathways, might provide new therapeutic approaches to the psoriasis and other inflammatory skin diseases.


Subject(s)
Female , Humans , Male , Anti-Infective Agents/metabolism , Antimicrobial Cationic Peptides/metabolism , Psoriasis/metabolism , Receptors, Calcitriol/metabolism , Toll-Like Receptors/metabolism , Vitamin D/blood , beta-Defensins/metabolism
16.
Indian J Chest Dis Allied Sci ; 1996 Jan-Mar; 38(1): 5-11
Article in English | IMSEAR | ID: sea-29446

ABSTRACT

The acetylator status of 200 pulmonary tuberculosis patients was determined by sulphadimidine (SDM) acetylation in (1) urine and (2) serum. In both estimations, distribution of the patients with regard to the acetylation rates was found to be bimodal. Based on the percent frequency distribution of acetylated SDM, the antimode for urine and serum was 65% for the former and 45% for the latter. Patients acetylating above 65% or 45% of administered SDM were taken as rapid acetylators, while those acetylating less, were slow acetylators. The ratio of slow to rapid acetylators in urine and serum was 58 : 42 and 66 : 34 respectively. The renal clearance of acetylated fraction of SDM was considerably greater as compared to that of the unacetylated fraction. Agreement between the two methods as evaluated by the kappa statistic was 0.71. The determination of the acetylator status by the SDM acetylation test in the urine is simple to perform and has acceptable accuracy. It may be used as an acceptable substitute to serum for estimating the isoniazid inactivation status which is of considerable importance when patients are treated with daily/ intermittent/once-weekly drug regimens for tuberculosis.


Subject(s)
Acetylation , Adolescent , Adult , Aged , Anti-Infective Agents/metabolism , Antitubercular Agents/metabolism , Humans , Isoniazid/metabolism , Middle Aged , Phenotype , Sulfamethazine/metabolism , Tuberculosis, Pulmonary/genetics
SELECTION OF CITATIONS
SEARCH DETAIL